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Foreword 
Since my childhood, I have always been fascinated by how things work, from the 

mechanics of toys to the logic behind video games. This curiosity naturally evolved into a 
passion for programming, especially in the realm of real-time systems and game 
development. Over the years, I’ve spent countless hours experimenting, breaking, and 
rebuilding virtual environments, driven by the desire not just to play games, but to 
understand and create the systems that power them. 

 
This bachelor project represents the culmination of that passion. By diving deep into 

the inner workings of physics simulation and exploring the challenges of performance and 
realism in a 3D environment, I have not only expanded my technical skills but also pushed 
myself to think critically and creatively. It reflects months of research, problem-solving, and 
dedication. 

 
I hope this project serves as both a meaningful conclusion to my academic 

journey and a solid foundation for my future as a game programmer and software 
engineer.  
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Abstract 
This bachelor project focuses on the transition of a custom-built 2D physics engine to 

a functional 3D simulation framework, with a particular emphasis on fluid dynamics using 
Smoothed Particle Hydrodynamics (SPH). The objective was to design and implement a 
performant, scalable system capable of simulating particles in real time mostly on a mono 
threaded CPU architecture. 

The project began with the extension of the existing architecture to support 3D math 
and collision detection. A naive SPH simulation was first implemented to establish the 
fundamentals of fluid behavior, followed by significant optimisation using a spatial hashing 
grid to efficiently retrieve neighboring particles. Finally, the fluid simulation was ported to a 
compute shader, using the GPU to drastically improve performance. 

The result is a modular and extensible 3D physics engine that serves as both a 
learning platform and a foundation for future experimentation in physically-based simulation 
and game development. 

 
 
 
 
Subject keywords: physics engine, fluid simulation, smoothed-particle hydrodynamics (SPH), 
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1. Introduction 

1.1 Starter 

Simulating water in real time is known as one of the most complex challenges in 
physics-based simulations and computer graphics. Achieving a high level of realism while 
maintaining performance requires efficient numerical methods and optimised computations. 
One promising approach is Smoothed Particle Hydrodynamics (SPH), a particle-based 
method widely used for fluid simulations. 

Over the past few decades, numerous communities have shown growing interest in 
fluid simulation, ranging from computational physics and applied mathematics to the visual 
effects industry and real-time graphics in video games. In academic research, fluid dynamics 
has long been a field of intense study, with scientists developing complex models to simulate 
natural phenomena like ocean currents, weather systems, and blood flow. These simulations 
often prioritize physical accuracy over computational performance. 

In contrast, the visual effects (VFX) community, particularly in cinema and high-end 
animation, has adopted fluid simulation techniques to enhance realism in scenes involving 
water, smoke, and explosions. Here, the focus is on visual plausibility and artistic control, 
with less concern for real-time performance. More recently, the video game industry and 
interactive media developers have sought to incorporate fluid simulations into real-time 
environments, sparking innovations that balance realism with strict performance constraints. 
Among the most relevant and contemporary communities are those building real-time 
engines and game physics middleware, where Smoothed Particle Hydrodynamics (SPH) is 
increasingly explored for its scalability and GPU-friendly nature. 

However, a persistent challenge lies in bridging the gap between physical realism 
and real-time interactivity. While SPH has proven capable of simulating convincing fluid 
behavior in precomputed environments, its integration into real-time systems often suffers 
from performance bottlenecks and numerical instability. Attempts to optimise the method 
such as spatial partitioning, adaptive time-stepping, and parallel computation have shown 
promise, but achieving both high visual fidelity and responsiveness remains an elusive goal 
(Müller et al., 2003). 

It is within this context that the current study finds its relevance, given these ongoing 
challenges and partial solutions, it becomes pertinent to rigorously investigate the 
capabilities and limits of SPH in real-time simulations. Can it truly deliver the realism 
demanded by modern interactive applications without compromising performance? 

1.2 Problematic 

This project investigates the feasibility of achieving realistic water behaviour using a 
real-time, SPH-based simulation within a custom 3D physics engine, and the associated 
limitations. The focus is on evaluating the physical accuracy, computational constraints and 
scalability of this method when applied in real time. The study aims to identify key technical 
challenges, such as stability, performance bottlenecks and precision trade-offs, in replicating 
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fluid dynamics under strict real-time constraints. The project will highlight the potential and 
limitations of SPH for real-time water simulation. 

1.3 Project Plan 
 

This study is divided into four main stages. First, we describe the transition from a 2D 
to a 3D physics engine to lay the foundation for three-dimensional fluid simulation. Next, we 
implement the Smoothed Particle Hydrodynamics (SPH) method within this engine. Then, 
we focus on optimising the simulation, conducting performance measurements and visual 
assessments. Finally, we present our conclusions based on the results, discussing the 
limitations and potential improvements of the approach. Additionally, we will collaborate with 
another student working on fluid rendering to evaluate the visual fidelity and integration of 
the simulation. 

2. Background and Related Work 

Real-time water simulation is a key research topic in the fields of computer graphics, 
computational physics and game development. Various methods have been suggested for 
balancing realism and performance, each offering different advantages and limitations. 

2.1 Fluid Simulation Techniques  

Fluid dynamics simulations can be categorised broadly into two types: Eulerian 
grid-based and Lagrangian particle-based methods. 

●​ Eulerian Approaches (e.g., Navier-Stokes equations solved on a grid) are widely 
used in offline simulations and precomputed effects. While they provide highly 
detailed results, their computational cost makes them impractical for real-time 
applications. 

●​ Lagrangian Methods, model fluids as discrete particles interacting under physical 
forces. This method is particularly suited for real-time applications due to its 
adaptability and efficient neighbor search algorithms. 

2.2 Smoothed Particle Hydrodynamics (SPH)  

SPH (Smoothed Particle Hydrodynamics), introduced by (Gingold & Monaghan, 
1977) (initially for astrophysical problems), has become a popular technique for simulating 
fluids. It approximates continuous fluid properties using a weighted sum of neighbouring 
particles, making it well-suited to real-time simulations. Modern SPH implementations 
include Weakly Compressible SPH (WCSPH) and Predictive-Corrective Incompressible SPH 
(PCISPH), which are designed to enhance stability and mitigate numerical errors. 

2.2.1 Main concepts regarding the topic 
 

Here are some important words and their definitions to bear in mind. 
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2.2.1.1 Density 
 

In fluid dynamics, density is defined as the mass of a fluid per unit volume, and is a 
fundamental property used to describe its state. 
In SPH, a particle's density is computed by summing the contributions of its surrounding 
particles using a smoothing kernel. 
 

 
Figure 1: Schematic view of an SPH convolution 

2.2.1.2 Pressure 
 

In fluid dynamics, pressure refers to the force exerted per unit area by a fluid. In 
SPH, pressure is usually calculated using an equation of state based on the fluid’s density. 
 

 
Figure 2: Laser representation of pressure curve 

2.2.1.3 Viscosity 
 

Viscosity is the internal friction of a fluid, which resists the relative motion of adjacent 
layers. It is also responsible for the diffusion of momentum within the fluid. 
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Figure 3: Nvidia Flex, high viscosity sample​ ​   Figure 4: Nvidia Flex, low viscosity sample 

2.2.1.4 Vorticity 
 

Vorticity is a vector quantity that measures the local rotation, or 'spin', of fluid 
elements. It is defined as the curl of the velocity field. 

 
Vorticity is particularly useful for visualising and analysing rotational structures, such 

as vortices and turbulence, within a fluid. 
 

 
Figure 5: Schematic representation of vorticity field 

 

2.3 Real-Time Applications and Performance Challenges  

Real-time fluid simulation plays a crucial role in interactive applications such as video 
games, virtual reality, and simulation training environments. These use cases demand both a 
high degree of visual realism and computational efficiency, posing several technical 
challenges that must be carefully balanced. 
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●​ Computational Complexity: Simulating realistic fluid behavior requires tracking the 
dynamics of thousands or even millions of individual particles. Each particle must 
interact with its neighbors through pressure, viscosity, and external forces, leading to 
an O(n⋅k) computational complexity, where k is the average number of neighbors per 
particle. To make this tractable in real-time, efficient spatial partitioning techniques 
such as uniform grids or spatial hashing are used to accelerate neighborhood queries 
(Ihmsen et al., 2014). Without such structures, brute-force neighbor search becomes 
prohibitively expensive as the number of particles grows. 

 

●​ Memory and GPU Optimisation: The rise of GPU programming through platforms 
such as CUDA has enabled significant performance improvements in fluid 
simulations. By parallelizing force computation, integration, and neighbor search, 
GPUs can simulate tens of thousands of particles in real time (Macklin et al., 2014). 
However, memory layout and cache coherence become critical at this scale. 
Simulation frameworks often rely on Structure of Arrays (SoA) data layouts and 
shared memory usage to minimize memory access latency and improve throughput. 

 

●​ Stability and Realism Trade-offs: Ensuring numerical stability in real-time 
simulations often requires compromises between physical accuracy and 
performance. Time step size, in particular, is constrained to avoid instability. To 
compensate, techniques such as XSPH viscosity (Monaghan, 1992) are used to 
reduce numerical noise and promote smooth motion. Surface tension models and 
artificial pressure terms (Müller et al., 2003) help simulate cohesive behavior in 
liquids without requiring prohibitively small time steps. Furthermore, adaptive 
time-stepping strategies can be employed to dynamically adjust simulation resolution 
based on particle interactions, improving performance without significant loss of 
realism (Bender and Koschier, 2017). 

In summary, achieving visually plausible fluid behavior in real time requires careful 
engineering and algorithmic trade-offs. Performance constraints must be addressed at both 
the algorithmic and hardware levels, while stability-enhancing techniques help bridge the 
gap between accuracy and interactivity. 

2.4 Existing Implementations and Frameworks 

Several frameworks and engines offer SPH-based fluid simulations: 

2.4.1 LiquiGen and the Stable Fluids Method 

LiquiGen by Jangafx is a real-time fluid simulation system designed primarily for use 
in game engines and interactive applications. It distinguishes itself from traditional 
particle-based methods like Smoothed Particle Hydrodynamics (SPH) by relying on 
grid-based (Eulerian) techniques to simulate the behavior of fluids. LiquiGen's design is 
influenced heavily by the foundational work of Jos Stam, particularly his 1999 paper "Stable 
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Fluids", which introduced a breakthrough in unconditionally stable fluid simulation methods 
suitable for real-time applications. 

2.4.1.1 Stable Fluids: Background and Core Concepts 

The Stable Fluids paper presented a novel approach to numerically solving the 
Navier-Stokes equations, the fundamental equations governing fluid motion on a fixed grid. 
Jos Stam’s method was groundbreaking because it allowed for unconditional stability, 
meaning simulations could run with large time steps without becoming unstable or producing 
non-physical artifacts. This was in contrast to earlier fluid solvers, which often required very 
small time steps to remain stable, making them impractical for interactive applications. 

The Stable Fluids algorithm is based on three main components: 

1.​ Advection using Semi-Lagrangian Methods: Instead of moving fluid quantities 
forward in time (Eulerian advection), the algorithm traces backward along the velocity 
field to determine where fluid properties came from. This method, known as 
semi-Lagrangian advection, is stable even with large time steps and avoids the 
numerical diffusion problems of simpler advection schemes.​
 

2.​ Diffusion Solved with Implicit Methods: Viscosity (diffusion of velocity) is handled 
using an implicit solver, which is unconditionally stable and does not require 
restrictive time step sizes. This is essential for simulating thicker or more viscous 
fluids in real time.​
 

3.​ Pressure Projection Step: To enforce incompressibility, Jos Stam introduced a 
pressure projection step that adjusts the velocity field to be divergence-free. This 
involves solving Poisson’s equation on the grid, typically using an iterative method 
like Gauss-Seidel or conjugate gradient.​
 

These innovations allowed fluids to be simulated in a visually plausible and stable 
manner, even on limited hardware, making Stable Fluids a cornerstone of real-time fluid 
dynamics research. 

2.4.1.2 LiquiGen: Real-Time Grid-Based Fluid Simulation 

Building on the principles introduced by Jos Stam, LiquiGen implements a grid-based 
(Eulerian) fluid simulation system optimised for modern GPU architectures. Unlike SPH or 
particle-based systems, which represent fluids as discrete particles, LiquiGen discretizes the 
simulation space into a uniform 3D grid and stores fluid properties (velocity, pressure, 
density) at grid cells or cell faces. 

LiquiGen retains the key advantages of the Stable Fluids approach (Vassvik, 2022): 

●​ Unconditional stability, allowing large time steps and real-time interaction.​
 

●​ Efficient pressure projection, using optimised solvers adapted for GPU execution.​
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●​ Visual plausibility, including swirling flows, vortices, and incompressible motion.​
 

To enhance visual richness and interactivity, LiquiGen also integrates features such 
as: 

●​ Vorticity confinement, to compensate for the damping of small-scale detail caused 
by numerical diffusion.​
 

●​ Obstacle interaction, enabling two-way coupling between fluid and solid objects 
using signed distance fields or velocity boundary conditions.​
 

●​ Multiresolution grids, to simulate large-scale effects efficiently while preserving 
detail where necessary.​
 

LiquiGen is particularly well suited for applications where stability, performance, and 
plausible visual fidelity are more important than strict physical accuracy. This includes video 
games, interactive simulations, VR experiences, and special effects. Its reliance on GPU 
compute shaders and CUDA enables simulations involving thousands of grid cells at 
interactive frame rates. 

 

​
Figure 6: LiquiGen & Blender - 4K bubbles and foam liquid simulation test 

2.4.2 NVIDIA Flex and the Particle-Based Method 

NVIDIA Flex is a unified, particle-based physics simulation framework developed by 
NVIDIA, designed to fully leverage the massively parallel architecture of modern GPUs. 
Unlike traditional rigid body physics engines, which often handle specific interaction types 
separately, Flex adopts a unified approach where all simulated entities (rigid bodies, soft 
bodies, fluids, cloth, and gases) are represented as particles. This generalization allows Flex 
to simulate a broad range of physical phenomena within a consistent computational 
framework (Macklin et al., 2014). 
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At the core of Flex lies the Position-Based Dynamics (PBD) method, a 
constraint-based simulation technique that prioritizes stability and controllability. Unlike 
force-based methods, which compute forces and integrate them over time, PBD updates 
particle positions directly by satisfying a set of positional constraints. This method is 
inherently well-suited to GPU architectures due to its parallelism and superior numerical 
stability, especially over long simulation times or under complex interactions. 

For fluid simulation, Flex uses a particle-based representation similar to Smoothed 
Particle Hydrodynamics (SPH), but adapted to the PBD paradigm. Fluid particles maintain a 
target density through iterative positional corrections, effectively simulating pressure forces 
and preserving incompressibility. Cohesion and surface tension effects are modeled via 
particle-particle attraction forces and anisotropic kernels, enabling realistic phenomena such 
as droplet formation and splashing. 

To achieve high performance, Flex takes advantage of CUDA-enabled GPUs, 
executing all major simulation steps (neighbor searches, constraint solving, and position 
integration) in parallel. These neighbor searches are accelerated using spatial partitioning 
structures, such as uniform grids or hierarchical grids, optimised for GPU execution. 

Flex also supports continuous collision detection and two-way coupling with rigid 
bodies, allowing fluid and solid objects to interact dynamically. Thanks to the unified particle 
representation, both fluids and rigid bodies can share the same solver, eliminating the need 
for complex interfacing or data conversion. 

NVIDIA Flex has been adopted in a variety of real-time applications, including games 
and interactive simulations, where both visual realism and performance are essential. While 
it favors stability and speed over strict physical accuracy, Flex demonstrates how modern 
GPU architectures can be harnessed to perform complex physics simulations in real time. Its 
architecture marks a shift in simulation design from specialized, CPU-bound solvers to highly 
parallel, GPU-based systems. 

​
Figure 7: Nvidia Flex, Bunny Bath Dam Sample 
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2.4.3 NVIDIA PhysX 

NVIDIA PhysX is a real-time physics simulation engine widely used in the game 
development industry. While it is best known for its rigid body dynamics and collision 
detection, PhysX also supports fluid simulation, which is based on particle methods and 
GPU acceleration. Unlike Flex, which uses position-based dynamics for flexibility and 
stability, PhysX implements a more traditional Smoothed Particle Hydrodynamics (SPH) 
approach, focusing on realistic incompressible or weakly compressible fluid behavior. 

At its core, PhysX models liquids as discrete particles, each representing a small 
volume of fluid. These particles interact using SPH formulations, which approximate 
continuum fluid dynamics by computing local properties such as density, pressure, and 
viscosity from contributions of nearby particles. In each simulation step, particles are 
advanced using Newtonian mechanics, with forces derived from pressure gradients, 
viscosity, gravity, and user-defined interactions. 

Density is estimated by summing the mass contributions of neighboring particles, 
weighted by a smoothing kernel such as the poly6 kernel. Pressure is calculated using an 
equation of state, penalizing deviations from a rest density. The resulting pressure forces are 
computed from pressure gradients, typically using the spiky kernel for precise directionality. 
Viscosity effects are simulated by analyzing velocity differences between neighbors and 
applying damping forces, often using the Laplacian viscosity kernel. 

Unlike CPU-based implementations, PhysX exploits CUDA-enabled GPUs to 
parallelize computations. Particle data (positions, velocities, densities, and more) are stored 
in GPU-optimised buffers, and all major operations (neighbor searches, force calculations, 
and time integration) are performed on the GPU. A spatial grid (or uniform hash grid) divides 
the simulation space into fixed-size cells, allowing efficient neighbor queries by limiting 
checks to adjacent cells. This reduces the computational complexity from O(n²) to 
approximately O(n), enabling real-time simulation of thousands of particles. 

PhysX also includes collision handling with both static and dynamic objects. Particles 
detect contact with colliders and respond with repulsive forces, enabling effects like surface 
tension, adhesion, and splashing. Additionally, two-way coupling between fluids and rigid 
bodies allows fluid momentum to influence and move lightweight objects. 

A key distinction between PhysX and Flex lies in their target use cases and physical 
fidelity. While Flex emphasizes stability and versatility via position-based methods, PhysX 
targets physically accurate simulation of incompressible fluids, though it demands higher 
computational resources. This made it particularly suited for visual effects requiring plausible 
fluid motion, though adoption in production-level games was often limited by performance 
and hardware constraints. 

PhysX was prominently featured in NVIDIA GameWorks, powering demos of 
real-time water surfaces, pouring liquids, and splash effects. However, due to its complexity 
and performance costs, it was eventually phased out in favor of newer, more unified 
GPU-accelerated systems.  
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Recent versions of PhysX (like PhysX 5) have introduced improved fluid simulation 
using Finite Element Methods (FEM) and advanced particle-based models, incorporating 
lessons from both PhysX and Flex (Nvidia-omniverse, 2022). 

In summary, NVIDIA has an implementation of SPH-based fluid simulation within the 
PhysX framework, using GPU acceleration to simulate dynamic and particle-based fluid 
behavior in real time. Its integration with other physics systems and support for physically 
plausible interactions made it a powerful tool for high-fidelity visual effects and interactive 
simulations. 

2.4.4 Open-source libraries 

Beyond commercial solutions like NVIDIA Flex and PhysX, the research and 
development community has produced several open-source fluid simulation libraries that 
offer robust, customizable tools for both academic study and production use. Among the 
most notable are DualSPHysics, Position-Based Fluids (PBF), and SPlisHSPlasH, each 
implementing different methods of particle-based fluid simulation, optimised for performance, 
scalability, and physical accuracy. 

2.4.4.1 DualSPHysics 

DualSPHysics is a Smoothed Particle Hydrodynamics (SPH) based solver developed 
collaboratively by several universities and research centers. Designed for high-performance 
computing applications, it is especially well-suited for engineering simulations involving 
free-surface flows, wave-structure interactions, and dam break scenarios. 

Built in C++ and CUDA, DualSPHysics is capable of simulating millions of particles in 
real time by leveraging GPU acceleration. Its design emphasizes physical accuracy over 
visual appeal, making it ideal for scientific research and hydrodynamic modeling. Features 
include adaptive time stepping, open boundary conditions, floating body interactions, and 
wave generation tools. The software also supports MPI-based parallelization, allowing it to 
scale across multi-GPU or multi-node systems. 

​
Figure 8: Interaction of large waves with a real coast using Blender & DualSPHysics (SPH on GPU) 
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2.4.4.2 Position-Based Fluids (PBF) 

Position-Based Fluids (PBF) is a constraint-based simulation method derived from 
Position-Based Dynamics (PBD), initially introduced by (Macklin and Müller, 2013). This 
method prioritizes stability, real-time performance, and visual plausibility, making it popular in 
games and interactive applications. 

Unlike traditional SPH, which integrates forces over time, PBF enforces density 
constraints directly by iteratively correcting particle positions, maintaining incompressibility 
and preventing fluid collapse. This method supports features such as surface tension, 
vorticity confinement, and viscosity, all while remaining highly parallelizable, ideal for GPU 
computation. 

Several open-source implementations of PBF are available, often integrated into 
larger real-time physics frameworks or graphics engines, making it accessible for developers 
aiming to include fluid effects without sacrificing simulation speed or stability. 

​
Figure 9: Bunny taking a bath 

2.4.4.3 SPlisHSPlasH 

SPlisHSPlasH is a high-quality, open-source fluid simulation library focused on 
physically accurate SPH simulations for real-time graphics. Developed by Jan Bender, (since 
2016 and the Interactive Graphics and Simulation Group at the University of Freiburg, it 
features modular, highly optimised SPH solvers designed for GPU and multi-threaded CPU 
execution. 

SPlisHSPlasH supports various fluid solvers, including: 

●​ DFSPH (Divergence-Free SPH): for improved volume preservation​
 

●​ IISPH (Implicit Incompressible SPH): for accurate pressure solving​
 

●​ PCISPH (Predictive-Corrective Incompressible SPH): for stable time integration​
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The library is known for its extensibility, clean C++ architecture, and integration with 
visualization tools like OpenGL. It also includes boundary handling, rigid body coupling, and 
realistic surface rendering, making it suitable for both academic experimentation and 
interactive content creation. 

​
Figure 10: SPlisHSPlasH showcase 

 

Open-source fluid simulation libraries like DualSPHysics, Position-Based Fluids, and 
SPlisHSPlasH provide powerful alternatives to commercial tools, each tailored to specific 
use cases, from scientific accuracy and scalability to real-time interactivity and visual fidelity. 
These frameworks not only support cutting-edge research but also enable broader access to 
advanced fluid simulation techniques across academia, industry, and independent 
development. 

3. Methodology 
This bachelor project employs a methodology that combines theoretical 

understanding with the practical analysis of existing fluid simulation implementations. The 
aim is to study prior works and extract valuable insights in order to guide the development 
and optimisation of a custom 3D Smoothed Particle Hydrodynamics (SPH) fluid simulation 
system. This chapter outlines the chosen case studies and the anticipated development 
methodology. 

3.1 Study Cases 

To ground the development process in concrete examples and to better understand 
the nuances of fluid simulation techniques, two public projects were selected as study cases: 
Elijah Nicol’s SPH-Fluid-Simulator and Sebastian Lague’s Fluid Simulation. These projects 
each approach fluid simulation from different perspectives and offer valuable insights into 
both algorithmic structure and performance considerations. The comparative study of these 
two works serves multiple purposes: to validate physical models, assess computational 
efficiency and identify key implementation strategies. Lessons learned from these 
implementations are instrumental in shaping the structure and optimisation of this simulation. 

3.1.1 Elijah Nicol’s SPH-Fluid-Simulator 

A good example of an independently developed SPH solver is the work of the user 
Elijah Nicol on GitHub, who progressively explored different computational strategies for 
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implementing Smoothed Particle Hydrodynamics. His project stands out for the solver’s 
evolution from a single-threaded CPU implementation to a multithreaded version, and finally 
to a planned migration toward GPU-based computation. 

Initially, Elijah Nicol developed a monothreaded CPU-based SPH solver, which 
served as a baseline for understanding particle-based fluid dynamics. This first version 
included fundamental SPH components such as density estimation, pressure and viscosity 
forces, all computed sequentially. Although functionally correct, the performance was 
inherently limited by the sequential nature of the code, particularly when simulating a large 
number of particles. 

To overcome these limitations, he transitioned to a multithreaded implementation 
using CPU parallelism. By distributing the workload across multiple threads, he achieved 
significant performance improvements. This version leveraged concurrent computation of 
per-particle properties such as force accumulation and density calculation, effectively 
reducing the computational complexity associated with neighbor interactions. However, 
scalability remained constrained by the limited number of CPU cores and the overhead 
introduced by synchronization between threads. 

Recognizing the inherently parallel nature of SPH simulations, Elijah Nicol proposed 
the GPU as a more suitable platform for the solver. He outlined the advantages of compute 
shaders and the high degree of data parallelism offered by modern graphics hardware. 
Although his GPU implementation remained at the planning stage, his rationale was 
well-founded: the large number of available GPU cores and their optimised memory 
bandwidth are well-matched to the parallel structure of SPH algorithms, especially for tasks 
like neighbor search, density computation, and pressure force evaluation. 

Overall, Elijah Nicol work provides a useful reference for understanding the trade-offs 
and performance implications of different computational backends for SPH solvers. His 
project illustrates the natural progression from sequential to parallel computation and 
highlights the GPU as a compelling target architecture for real-time particle-based 
simulations. 

​
Figure 11: Simulation showcase 
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3.1.2 Sebastian Lague’s Fluid-Sim 

Sebastian Lague’s fluid simulation project within the Unity engine provides a notable 
example of an incremental and educational approach to Smoothed Particle Hydrodynamics 
(SPH) implementation. His work is particularly valuable for its clear breakdown of the solver's 
computational stages and his gradual transition from CPU-based methods to 
GPU-accelerated techniques using compute shaders. 

The initial version of Sebastian Lague's SPH solver was executed entirely on the 
CPU, where each particle's physical properties (including density, pressure, and the resulting 
forces) were computed in a sequential or minimally parallelized fashion. While pedagogically 
clear and structurally simple, this approach was inherently limited in terms of scalability and 
real-time performance, especially as the number of simulated particles increased. Sebastian 
Lague's implementation followed standard SPH formulations, applying the Navier-Stokes 
equations through kernel-based approximations for inter-particle interactions. 

To address the performance bottlenecks inherent to CPU-bound execution, 
Sebastian Lague transitioned the solver to run on the GPU via Unity's compute shader 
pipeline. This transformation involved parallelizing the core stages of the SPH algorithm: 
neighbor search, density calculation, pressure and viscosity force evaluation. By leveraging 
the parallel processing capabilities of modern GPUs, Sebastian Lague was able to 
dramatically increase simulation performance, enabling real-time interaction even with tens 
of thousands of particles. 

One of the critical steps in this transition was restructuring data access patterns and 
computation logic to suit the GPU’s massively parallel architecture. The shift required careful 
management of memory buffers, thread groups, and synchronization across compute 
threads. Despite Unity’s abstractions, Sebastian Lague’s work demonstrates a sophisticated 
understanding of how to map traditional CPU logic into the compute shader paradigm while 
maintaining numerical stability and coherence in the fluid behavior. 

Sebastian Lague's compute-shader-based solver stands out not only for its 
educational clarity but also for its efficient and practical design. It exemplifies a successful 
application of GPU acceleration for particle-based fluid simulation and serves as a valuable 
reference for real-time SPH implementation in game engines or interactive environments. 

​
Figure 12: Sebastian Lague’s simulation in Unity 

 

20 



3.2 Influence of preliminary research on practical project 
 

The planning of the fluid simulation development in this project is significantly 
influenced by two prior study cases: the monothreaded CPU-based SPH fluid simulation by 
Elijah Nicol, and the GPU-accelerated implementation in Unity using compute shaders by 
Sebastian Lague. These two sources of preliminary research provide both theoretical 
grounding and practical insights, each contributing to different aspects of the chosen 
methodology. 

 
Elijah Nicol's implementation presents a clear and didactic version of SPH running on 

a single-threaded CPU. Its main strength lies in the simplicity of the architecture, which 
facilitates a thorough understanding of the fundamental mechanisms involved in SPH 
simulation. Following a detailed analysis of this implementation, it becomes possible to 
clearly identify both effective strategies to adopt and common pitfalls to avoid when initiating 
the development of a new SPH system. 

 
The second study case, based on Sebastian Lague’s GPU-based fluid simulation, 

introduces a performant approach to real-time SPH using compute shaders. This 
implementation demonstrates the advantages of massively parallel architectures, particularly 
when processing large numbers of interacting particles. 

 
This research illustrates the transition from a mono threaded CPU model to a 

compute shader-based system capable of real-time performance. The architectural shift 
requires a redesign of the particle interaction system, including the introduction of a spatial 
partitioning structure. 

 
Together, the two study cases provide a complementary foundation for the 

development of the fluid simulation. The CPU-based version offers clarity, correctness, and a 
means to verify simulation behavior, while the compute shader approach introduces 
techniques necessary to achieve performance suitable for real-time applications. 

 
The progression from Elijah Nicol’s serial model to Lague’s parallel architecture 

mirrors the planned evolution of the project itself, from a focus on correctness and clarity to 
an emphasis on scalability and efficiency. Lessons learned from the CPU model inform the 
decision making for the early stages of development, while insights from the GPU 
implementation will guide the optimisation and final architecture. 

 
In summary, the preliminary research directly shapes the design decisions, 

implementation strategies, and performance goals of the practical project. It provides both 
the theoretical framework and the technical roadmap necessary to implement a reliable and 
performant SPH fluid simulation. 

3.3 Anticipated methodology 

The project involves the design and implementation of a fluid simulation using 
Smoothed Particle Hydrodynamics (SPH) within a homemade 3D physics engine. The 
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methodology will follow a progressive development pipeline, emphasizing modular design, 
performance analysis, and iterative optimisation. 

1.​ Porting from 2D to 3D​
The starting point of the project is an existing 2D physics engine named Bark and 
developed by the author. This codebase will be adapted to handle three-dimensional 
simulations, which will require a significant refactoring of core components, including 
collision detection, physics integration, and spatial data structures.​
 

2.​ Math Library Transition​
To improve compatibility and performance for 3D calculations, the engine’s custom 
math library will be replaced with a more optimised library suited for 3D vector and 
matrix operations (e.g., DirectXMath or similar). This change will facilitate 
SIMD-friendly operations and help unify spatial transformations.​
 

3.​ Naive SPH Implementation​
A basic version of SPH will be implemented using mono threaded CPU-based 
calculations. This version will focus on validating the fluid simulation model and 
include key components such as density, pressure and viscosity computations as 
well as all the force calculations.​
Each particle’s behavior will be computed independently, using brute-force neighbor 
searches, resulting in a 3*(O(n²)) complexity that will surely highlight the need for 
optimisation.​
 

4.​ Hash Grid Optimisation​
To improve performance, a uniform spatial hash grid will be needed to accelerate 
neighborhood lookups. This grid will divide space into cells and will hash particle 
positions to cell indices, enabling reduced neighbor search complexity. This 
optimisation will significantly reduce computational overhead while maintaining 
simulation quality.​
 

5.​ Profiling and Iterative Optimisation​
Throughout development, performance profiling will be conducted using tools such 
as Tracy Profiler to identify bottlenecks and guide further optimisations. Specific 
attention will be given to the framerate and the number of particles ​
 

6.​ Pooling with another student​
Collaboration with the student Olivier Pachoud who will be responsible for developing 
a realistic water rendering technique using ray tracing will take place. The goal of this 
cooperation is to apply visually advanced rendering (refraction, reflection, light 
absorption, etc) on top of the fluid data produced by the SPH simulation. The 
integration will probably involve sharing particle positions, densities, and possibly 
velocity data to drive the visual appearance of the fluid in a way that aligns with the 
physical simulation. This pooling of efforts will allow the project to showcase both 
accurate fluid behavior and high-quality visual output. 
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4. Practical Project 
This project was developed under the constraint of single-threaded CPU execution, 

meaning all simulation and processing tasks (except the compute shader stage) are 
performed sequentially on a single core. This limitation emphasizes algorithmic efficiency 
and careful resource management, as no parallelism or multithreading is leveraged to 
improve performance. 

4.1 Resources 
 

This section outlines the hardware and software used throughout the development 
and testing of the project. These resources were essential for implementing, debugging, 
profiling, and evaluating the real-time SPH-based water simulation in a custom 3D physics 
engine. 

4.1.1 Hardware 
The project was developed and tested on two different machines: a primary 

development setup and a secondary one. This allowed for additional performance evaluation 
and comparison across varying hardware configurations. 

 

4.1.1.1 Primary setup 
  

●​ CPU: Intel® Core™ i9-9900K @ 3.60GHz​
 

●​ RAM: 64 GB​
 

●​ GPU: NVIDIA GeForce RTX 2080 Ti (11GB) 
 

4.1.1.2 Secondary setup 
 

●​ CPU: AMD Ryzen 7 5800U with Radeon Graphics 1.90 Ghz​
 

●​ RAM: 16 GB​
 

●​ GPU: NVIDIA GeForce RTX 3050 Ti Laptop GPU 
 

4.1.2 Software 

The following software tools and libraries were used during the development process. 
These supported compilation, debugging, rendering, and performance profiling of the 
simulation: 

●​ Operating System: Windows 10 for primary setup and Windows 11 for secondary 
setup​
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●​ IDE: Visual Studio 2022​
 

●​ Build System: CMake 3.29.0​
 

●​ Dependency Management: vcpkg​
 

●​ Graphics API: OpenGL, using FreeGLUT and GLEW​
 

●​ Profiling Tool: Tracy​
 

●​ UI and Debugging Utilities: Dear ImGui​
 

●​ Math Library: DirectXMath 

 

4.1.3 Specific resources for pooling 

The Falcor framework version 8.0 (NVIDIA, August 2024) was selected by Olivier 
Pachoud due to its ease of use and efficiency in creating 3D ray-traced scenes. This 
advantage stems from its encapsulation of the DirectX 12 API (Microsoft, 2014) along with 
its Raytracing extension, known as DXR (DirectX Raytracing) (Microsoft, 2018), which 
significantly simplifies the implementation of raytracing pipelines. 

4.2 Porting from 2D to 3D 
 

In the initial phase, the custom math library was replaced with DirectXMath to 
leverage SIMD optimisations and enhance performances. Then all two-dimensional vectors 
were converted to three-dimensional ones, and polygons were removed as their 3D versions 
were not required for the SPH simulation. The rendering was implemented using GLUT due 
to its simplicity, alongside the development of a dynamic camera system. All relative 
positions were updated to align with the new world coordinate system. The spatial data 
structure was modified from a quadtree to an octree, during which a significant bug related to 
trigger collisions was encountered and resolved after considerable effort. At this stage, a 
sample named WaterBathSample was created, where particles were instantiated to observe 
their behavior prior to the implementation of the SPH algorithm. 
 

4.3 Naive SPH Implementation 
 
The implementation of Smoothed Particle Hydrodynamics (SPH) began with an 

evaluation of various data structures for storing particles, with the primary objective of 
preserving physical interactions between fluid particles and other physics objects. After a 
series of tests, the chosen approach involved reusing the existing Body class (originally 
designed for rigid body objects) by adapting it to represent fluid particles. This class includes 
essential attributes such as position, velocity, and a mechanism for applying forces. To 
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distinguish fluid particles from other types of bodies within the simulation, an enumeration 
value BodyType::FLUID was introduced. 
 

​
Figure 13: Body class 

 
To simulate realistic fluid behavior, three primary physical quantities were computed 

for each fluid particle: density, pressure, and viscosity. These computations were carried out 
using a straightforward, unoptimised approach. The algorithm involved iterating over every 
particle in a brute-force manner, resulting in a time complexity of 3*(O(n²)), where n is the 
total number of fluid particles. 
 

Density was computed using the standard SPH formulation, which sums the 
contributions of nearby particles weighted by a smoothing kernel function. The poly6 kernel 
was used for its smoothness and suitability for density estimation. For each particle, its 
density was calculated by iterating through all other particles and accumulating their mass 
contributions, multiplied by the kernel evaluated at the distance between the two particles. 
 

Once density was determined, pressure was computed using an equation of state 
derived from the ideal gas law. This formulation relates pressure to density through a 
stiffness constant and a rest density, ensuring that the fluid behaves compressibly in 
accordance with SPH conventions. 
 

Viscosity forces were also calculated using a naive implementation of the standard 
SPH viscosity formulation. This involves computing the velocity difference between pairs of 
particles and applying a viscosity kernel (commonly the spiky or Laplacian viscosity kernel). 
The resulting force is then accumulated to influence each particle’s velocity over time. 
 

Due to the lack of spatial partitioning or neighbor search optimisations, all particle 
interactions were evaluated globally, making the simulation computationally expensive for a 
large number of particles. Nonetheless, this naive implementation served as a reference 
baseline for later optimisations using acceleration structures such as spatial hash grids. 
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4.4 Optimisation 

In an effort to reduce the computational complexity inherent in the naive SPH 
implementation, an initial attempt was made to reuse the existing spatial partitioning 
structure already employed for physical object interactions: an octree. The idea was to 
leverage the octree to quickly identify neighboring fluid particles, thereby avoiding the need 
for an exhaustive O(n²) comparison. 

The octree, however, was originally designed to manage rigid body interactions and 
was optimised for sparse and unevenly distributed object sets. When applied to the fluid 
simulation, which involves a dense and relatively uniform distribution of particles, the octree 
structure proved to be suboptimal. Several limitations emerged: the cost of inserting and 
updating fluid particles into the tree each frame was non-trivial, and querying for neighbors 
within a fixed radius often required descending multiple branches or traversing several 
neighboring nodes, leading to performance bottlenecks. 

Given these drawbacks, a spatial hash grid was implemented as an alternative 
neighbor search strategy. This structure partitions space into uniform cells, each storing a list 
of particles within its bounds. Fluid particles are hashed into grid cells based on their 
positions, and neighbor queries are limited to a particle’s surrounding cells within the 
smoothing radius. This approach drastically reduces the number of comparisons per particle, 
achieving average-case performance closer to linear complexity with respect to the number 
of particles. 

​
Figure 14: Spatial Hash Grid structure 

The spatial hash grid proved to be significantly more efficient for dense particle 
systems, especially when combined with a fixed smoothing length and uniform particle sizes. 
It offered constant-time insertion and fast lookup for neighbor searches, making it a 
better-suited solution for SPH simulations than the previously used octree. 
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​
Figure 15: World Update function with all SPH computations 

4.5 Pooling 
After completing the simulation optimisations, the next step involved integrating it into 

the graphics rendering framework developed by the student Olivier Pachoud. This 
integration was carried out using his Falcor-based application, with the build and 
configuration managed through CMake. 

 

​
Figure 16: First step of the pooling (1000 particles) 

4.6 Compute Shader Acceleration 
To extract a surface from the fluid simulation, a density map must be generated by 

sampling fluid density at regular spatial intervals, determined by the resolution of a 3D 
texture. However, since the original simulation was CPU-based, evaluating density at 
numerous positions was computationally expensive. To overcome this limitation, the 
simulation was ported to a compute shader, enabling parallel computation of the density field 
directly on the GPU. This approach significantly accelerated the generation of the density 
map and enhanced the overall performance of the SPH simulation. 
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After transitioning the CPU-based simulation to a compute shader, a significant 

challenge emerged: the spatial hash grid previously used was incompatible with GPU 
architecture. Specifically, the grid cells stored collections of particles, a structure that is not 
well-suited for parallel execution on the GPU due to memory access conflicts. 
 

To optimise memory alignment and access patterns, a Bitonic Sort algorithm was 
implemented on the GPU to sort particles according to their spatial cell indices. This sorting 
ensures better memory access, thereby significantly improving the efficiency of range 
queries. As a result, neighboring particles can be retrieved in constant time during the 
density sampling process, enhancing both performance and scalability of the simulation. 
 

​
Figure 17: Visualization of the Bitonic Sort algorithm 

 
Following the implementation of the Bitonic Sort algorithm on the GPU, a limitation 

was encountered related to thread availability. Specifically, the parallel nature of the original 
algorithm imposed a hard limit, allowing only 1,024 particles to be processed simultaneously 
due to the maximum number of threads per thread group. To overcome this constraint, the 
sorting procedure was restructured into an iterative variant commonly referred to as Bitonic 
Merge Sort with iterations. This version decomposes the sorting process into multiple 
sequential passes, each executed with a fixed number of threads. By iterating over these 
passes, the algorithm is no longer constrained by thread group size, enabling the efficient 
sorting of arbitrarily large particle arrays entirely on the GPU. 

 
With the simulation now executed on the GPU using compute shaders, and the 

neighbor search process optimised through a spatial hash grid with the bitonic merge sort 
with iterations algorithm, the system achieves stable real-time performance with particle 
counts reaching up to 40,000. 
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​
Figure 18: Final step of the pooling (40’000 particles) 

 
Furthermore, a matrix transformation step has been integrated into the boundary 

collision response, enabling arbitrary rotation and scaling of the simulation domain. 

5. Quantitative analysis 

Performance evaluation is conducted using a structured testing protocol aimed at 
measuring the efficiency of the simulation under increasing computational loads. The main 
metric examined is the maximum number of particles that can be simulated within the time 
constraints of a single frame, which is fixed at 16.67 milliseconds (equivalent to 60 frames 
per second). 

Detailed timing data is collected for the entire simulation process, as well as for each 
individual computational stage. These stages include grid construction, density estimation, 
pressure force computation and viscosity force calculation. 

To capture performance trends and mitigate the impact of outliers, both the average 
and median execution times are recorded for each of these steps. Profiling is carried out 
using Tracy, a high-performance, real-time profiling tool that allows for precise, fine-grained 
analysis of time-critical sections of the simulation pipeline. 

For reference, the performance figures for other fluid simulations vary widely. For 
example, Sebastian Lague’s multithreaded, CPU-based fluid simulation supports around 
3,000 particles in real time without using a compute shader. Elijah Nicol’s SPH demo runs 
smoothly with around 1,000 particles using his single-threaded CPU implementation. By 
contrast, most NVIDIA Flex samples can simulate around 70,000 particles in real time using 
GPU acceleration. These benchmarks provide useful context for evaluating the scalability 
and performance of the current simulation. 

 
Using the single-threaded CPU implementation, the current simulation is expected to 

handle at least 1,000 particles, and at least 20,000 particles in real time using the compute 
shader implementation. 
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5.1 Data charts 
 

 
Figure 19: 3D engine without SPH (7’000 particles) 

 

 
Figure 20: Naive SPH implementation (900 particles) 

 

 
Figure 21: Spatial Hash Grid Optimisation (1600 particles) 

​  

 3D engine without 
SPH 

7’000 particles 

Naive SPH 
Implementation 

900 particles 

Spatial Hash Grid 
Optimisation 

1’600 particles 

Compute Shader 
Simulation 

50’000 particles 
(CPU + GPU) 

World 
Update 

Mean: 13.96 ms​
Median: 14.26 ms​
α: 4.13 ms 

Mean: 14.02 ms​
Median: 13.89 ms​
α: 462.85 μs 

Mean: 14.13 ms​
Median: 13.69 ms​
α: 1.77 ms 

 
Mean: 8.29 ms 

Density Not Implemented Mean: 2.57 ms​
Median: 2.52 ms​
α: 135.94 μs 

Mean: 4.05 ms​
Median: 3.9 ms​
α: 555.21 μs 

 
Mean: 2.05 ms 

Pressure Not Implemented Mean: 8.59 ms​
Median: 8.52 ms​
α: 346.95 μs 

Mean: 5.04 ms​
Median:4.9 ms​
α: 642.38 μs 

 
Mean: 2.29 ms 

Viscosity Not Implemented Mean: 2.5 ms​
Median: 2.48 ms​
α: 118.82 μs 

Mean: 3.97 ms​
Median: 3.83 ms​
α: 564.02 μs 

 
Mean: 2.31 

Grid Not Implemented Not Implemented Mean: 351.18 μs​
Median: 341.13 μs​
α: 36.06 μs 

 
Mean: 2.46 ms 
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5.2 Result Analysis 
The performance of the SPH simulation was evaluated through successive 

implementation stages, each applying progressively more advanced optimisation 
techniques. Four major configurations were benchmarked: a baseline 3D engine without 
SPH, a naïve CPU-based SPH implementation, a spatially optimised version using a spatial 
hash grid, and a GPU-based compute shader implementation. 
 

The initial configuration (Figure 17) can handle 7,000 physics particles without any 
SPH simulation. This version served as a performance baseline to isolate the cost of fluid 
dynamics computations. The mean world update time was 13.96 ms, with a median of 14.26 
ms and a standard deviation (α) of 4.13 ms. This relatively high standard deviation indicates 
minor instability in frame processing time, likely caused by uneven CPU workload or external 
system processes. 
 

The second configuration (Figure 18) introduced a naïve SPH solver using 
brute-force neighbor searches with a huge complexity 3*(O(n²)). Due to this inefficiency, the 
simulation could only support 900 particles within a similar frame time budget. The standard 
deviation (α) of 462.85 μs, showed more stable but constrained performance. Among the 
SPH computation phases, pressure computation was the most expensive, averaging 8.59 
ms, followed by density at 2.57 ms, and viscosity at 2.5 ms. This distribution highlights the 
computational cost of pressure force calculations in unoptimised implementations. 
 

The third configuration (Figure 19), a spatial hash grid was integrated to accelerate 
neighbor searches. This optimisation reduced the computational complexity of the solver, 
resulting in almost doubling the particle count (1,600 particles). The average time for density, 
pressure, and viscosity computations was 4.05 ms, 5.04 ms, and 3.97 ms respectively. In 
addition, the grid construction itself only required 351.18 μs, confirming its efficiency and 
negligible impact on the total update time. The performance gain demonstrates the 
effectiveness of grid-based spatial partitioning for fluid simulation. 
 

The final implementation of the simulation leverages a compute shader to offload the 
Smoothed Particle Hydrodynamics (SPH) computations to the GPU, resulting in a 
substantial increase in the number of particles that can be simulated in real time. 
Performance profiling was conducted with a configuration of 50,000 particles, representing a 
31 times improvement over the previous CPU-based implementation. 

 
While this performance gain demonstrates the potential of GPU parallelism for 

large-scale particle simulations, the actual number of particles that can be simulated is 
currently constrained by several factors specific to the project’s configuration. These 
limitations include resource allocation caps, memory management overhead, thread group 
size constraints, and possible bottlenecks related to buffer synchronization and data transfer 
between CPU and GPU. Despite these constraints, since the world update takes only 8.29 
ms to be processed the current setup clearly shows that the system could support 
significantly larger particle counts with further optimization or architectural adjustments. 
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5.3 Further development 
Although the current implementation successfully ports the physics engine to 3D and 

demonstrates a basic fluid simulation using Smoothed Particle Hydrodynamics (SPH), there 
are several areas that could be developed further. These could enhance performance, 
improve physical accuracy or extend the engine’s capabilities to encompass real-world and 
game-oriented use cases. 
 

One key area for improvement is the physical realism of the simulation. While the 
current SPH formulation's basic pressure and viscosity model is suitable for demonstration 
purposes, it limits the range and stability of fluid behaviours. Implementing vorticity 
confinement would help to preserve the swirling motions that naturally arise in turbulent 
flows, but which tend to dissipate in standard SPH simulations. Similarly, adding surface 
tension models would enable the simulation to better represent small-scale fluid phenomena, 
such as droplets, cohesion and fragmentation, which are essential for achieving more 
visually convincing results. 

 
Another critical improvement would be to enforce incompressibility more rigorously. 

Although the current method permits some density variation, more advanced techniques 
such as Predictive-Corrective Incompressible SPH (PCISPH) and Divergence-Free SPH 
(DFSPH) could be adopted to minimise pressure fluctuations and enable larger, more stable 
time steps. These methods have been shown to greatly enhance the accuracy of fluid 
simulations, particularly in scenarios involving tight constraints or confined volumes. 

 
Significant refinement of fluid-solid interactions could also be beneficial. Currently, 

solid boundaries are handled using simplified constraints that do not fully capture the 
complexity of fluid behaviour near solid surfaces. Handling solid-fluid interactions more 
accurately, including dynamic boundaries and pressure projection methods, would enable 
fluids to respond more realistically to obstacles and moving objects. 
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6. Conclusion 
The aim of this Bachelor's project was to explore the challenges and limitations of 

achieving realistic, real-time water physics through Smoothed Particle Hydrodynamics (SPH) 
in a custom-made 3D physics engine. The goal was to analyse the computational demands, 
algorithmic complexities and architectural design decisions involved in simulating fluid 
behaviour in real time. 
 

This exploration involved the development and progressive optimisation of a naive 
SPH implementation. Early development efforts were concentrated on simulating fluid 
behavior through a particle-based approach, applying standard SPH equations to model 
density, pressure, and viscosity forces. This approach provided a foundational understanding 
of how local interactions between particles can approximate the behaviour of a continuous 
fluid. However, the naive approach quickly revealed performance bottlenecks, primarily due 
to the brute-force neighbour search and CPU-based computations. 
 

To address this issue, a spatial partitioning system that uses a hash grid was 
implemented, which significantly improved neighbour retrieval efficiency. Subsequently, the 
core SPH computations were transferred to a compute shader for GPU acceleration, using 
parallelism to enhance simulation speed while preserving visual and physical accuracy. 
While this shift improved real-time responsiveness, it also exposed additional complexities 
such as memory management between the CPU and GPU, precision issues and debugging 
limitations inherent to shader development. 
 

Ultimately, the project demonstrated that, although SPH is a powerful and intuitive 
method for simulating fluid dynamics, it presents significant computational and architectural 
challenges, particularly when aiming for real-time performance. The trade-off between 
physical accuracy and simulation speed remains a key limitation. Careful balancing is 
required between factors such as neighbour search complexity, time-step stability, solver 
accuracy and resource constraints. 
 

Realistic water physics in real-time environments, particularly in games and 
interactive simulations, often necessitate compromises. While SPH strikes a good balance 
between realism and controllability, further optimisations, hybrid models or level-of-detail 
techniques are necessary to scale the simulation to more complex or large-scale scenarios. 
 

In conclusion, this project has provided a technical and conceptual understanding of 
the complexities involved in real-time fluid simulation using SPH. It has highlighted the 
mathematical and computational demands, as well as the architectural challenges, of 
integrating such a system into a homemade 3D physics engine. A key takeaway is that 
incorporating fluid simulation into an existing physics system poses significant challenges. 
Many of the necessary data structures, memory layouts and update loops are not designed 
to handle the high levels of parallelism and precision required by a fluid simulation system. 
To achieve optimal performance and maintainability, it is often wiser to design the engine 
from the ground up with fluid simulation in mind, preparing the architecture, data flow and 
modular systems accordingly. 
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​
Figure 22: Final state of the CPU-based implementation (1600 particles) 

 

​
Figure 23: Final state of the GPU compute shader implementation (40’000 particles) 
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