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Since my childhood, | have always been fascinated by how things work, from the
mechanics of toys to the logic behind video games. This curiosity naturally evolved into a
passion for programming, especially in the realm of real-time systems and game
development. Over the years, I've spent countless hours experimenting, breaking, and
rebuilding virtual environments, driven by the desire not just to play games, but to
understand and create the systems that power them.

This bachelor project represents the culmination of that passion. By diving deep into
the inner workings of physics simulation and exploring the challenges of performance and
realism in a 3D environment, | have not only expanded my technical skills but also pushed
myself to think critically and creatively. It reflects months of research, problem-solving, and
dedication.

| hope this project serves as both a meaningful conclusion to my academic
journey and a solid foundation for my future as a game programmer and software
engineer.
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Abstract

This bachelor project focuses on the transition of a custom-built 2D physics engine to
a functional 3D simulation framework, with a particular emphasis on fluid dynamics using
Smoothed Particle Hydrodynamics (SPH). The objective was to design and implement a
performant, scalable system capable of simulating particles in real time mostly on a mono
threaded CPU architecture.

The project began with the extension of the existing architecture to support 3D math
and collision detection. A naive SPH simulation was first implemented to establish the
fundamentals of fluid behavior, followed by significant optimisation using a spatial hashing
grid to efficiently retrieve neighboring particles. Finally, the fluid simulation was ported to a
compute shader, using the GPU to drastically improve performance.

The result is a modular and extensible 3D physics engine that serves as both a
learning platform and a foundation for future experimentation in physically-based simulation
and game development.

Subject keywords: physics engine, fluid simulation, smoothed-particle hydrodynamics (SPH),
optimisation, performance, compute shader
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1. Introduction

1.1 Starter

Simulating water in real time is known as one of the most complex challenges in
physics-based simulations and computer graphics. Achieving a high level of realism while
maintaining performance requires efficient numerical methods and optimised computations.
One promising approach is Smoothed Particle Hydrodynamics (SPH), a particle-based
method widely used for fluid simulations.

Over the past few decades, numerous communities have shown growing interest in
fluid simulation, ranging from computational physics and applied mathematics to the visual
effects industry and real-time graphics in video games. In academic research, fluid dynamics
has long been a field of intense study, with scientists developing complex models to simulate
natural phenomena like ocean currents, weather systems, and blood flow. These simulations
often prioritize physical accuracy over computational performance.

In contrast, the visual effects (VFX) community, particularly in cinema and high-end
animation, has adopted fluid simulation techniques to enhance realism in scenes involving
water, smoke, and explosions. Here, the focus is on visual plausibility and artistic control,
with less concern for real-time performance. More recently, the video game industry and
interactive media developers have sought to incorporate fluid simulations into real-time
environments, sparking innovations that balance realism with strict performance constraints.
Among the most relevant and contemporary communities are those building real-time
engines and game physics middleware, where Smoothed Particle Hydrodynamics (SPH) is
increasingly explored for its scalability and GPU-friendly nature.

However, a persistent challenge lies in bridging the gap between physical realism
and real-time interactivity. While SPH has proven capable of simulating convincing fluid
behavior in precomputed environments, its integration into real-time systems often suffers
from performance bottlenecks and numerical instability. Attempts to optimise the method
such as spatial partitioning, adaptive time-stepping, and parallel computation have shown
promise, but achieving both high visual fidelity and responsiveness remains an elusive goal
(Mdller et al., 2003).

It is within this context that the current study finds its relevance, given these ongoing
challenges and partial solutions, it becomes pertinent to rigorously investigate the
capabilities and limits of SPH in real-time simulations. Can it truly deliver the realism
demanded by modern interactive applications without compromising performance?

1.2 Problematic

This project investigates the feasibility of achieving realistic water behaviour using a
real-time, SPH-based simulation within a custom 3D physics engine, and the associated
limitations. The focus is on evaluating the physical accuracy, computational constraints and
scalability of this method when applied in real time. The study aims to identify key technical
challenges, such as stability, performance bottlenecks and precision trade-offs, in replicating



fluid dynamics under strict real-time constraints. The project will highlight the potential and
limitations of SPH for real-time water simulation.

1.3 Project Plan

This study is divided into four main stages. First, we describe the transition from a 2D
to a 3D physics engine to lay the foundation for three-dimensional fluid simulation. Next, we
implement the Smoothed Particle Hydrodynamics (SPH) method within this engine. Then,
we focus on optimising the simulation, conducting performance measurements and visual
assessments. Finally, we present our conclusions based on the results, discussing the
limitations and potential improvements of the approach. Additionally, we will collaborate with
another student working on fluid rendering to evaluate the visual fidelity and integration of
the simulation.

2. Background and Related Work

Real-time water simulation is a key research topic in the fields of computer graphics,
computational physics and game development. Various methods have been suggested for
balancing realism and performance, each offering different advantages and limitations.

2.1 Fluid Simulation Techniques

Fluid dynamics simulations can be categorised broadly into two types: Eulerian
grid-based and Lagrangian particle-based methods.

e Eulerian Approaches (e.g., Navier-Stokes equations solved on a grid) are widely
used in offline simulations and precomputed effects. While they provide highly
detailed results, their computational cost makes them impractical for real-time
applications.

e Lagrangian Methods, model fluids as discrete particles interacting under physical
forces. This method is particularly suited for real-time applications due to its
adaptability and efficient neighbor search algorithms.

2.2 Smoothed Particle Hydrodynamics (SPH)

SPH (Smoothed Particle Hydrodynamics), introduced by (Gingold & Monaghan,
1977) (initially for astrophysical problems), has become a popular technique for simulating
fluids. It approximates continuous fluid properties using a weighted sum of neighbouring
particles, making it well-suited to real-time simulations. Modern SPH implementations
include Weakly Compressible SPH (WCSPH) and Predictive-Corrective Incompressible SPH
(PCISPH), which are designed to enhance stability and mitigate numerical errors.

2.2.1 Main concepts regarding the topic

Here are some important words and their definitions to bear in mind.



2.2.1.1 Density

In fluid dynamics, density is defined as the mass of a fluid per unit volume, and is a
fundamental property used to describe its state.
In SPH, a particle's density is computed by summing the contributions of its surrounding
particles using a smoothing kernel.
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Figure 1: Schematic view of an SPH convolution

2.2.1.2 Pressure

In fluid dynamics, pressure refers to the force exerted per unit area by a fluid. In
SPH, pressure is usually calculated using an equation of state based on the fluid’s density.

More intense

Less intense

Figure 2: Laser representation of pressure curve

2.2.1.3 Viscosity

Viscosity is the internal friction of a fluid, which resists the relative motion of adjacent
layers. It is also responsible for the diffusion of momentum within the fluid.



Figure 3: Nvidia Flex, high viscosity sample Figure 4: Nvidia Flex, low viscosity sample

2.2.1.4 Vorticity

Vorticity is a vector quantity that measures the local rotation, or 'spin', of fluid
elements. It is defined as the curl of the velocity field.

Vorticity is particularly useful for visualising and analysing rotational structures, such
as vortices and turbulence, within a fluid.
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Figure 5: Schematic representation of vorticity field

2.3 Real-Time Applications and Performance Challenges

Real-time fluid simulation plays a crucial role in interactive applications such as video
games, virtual reality, and simulation training environments. These use cases demand both a
high degree of visual realism and computational efficiency, posing several technical
challenges that must be carefully balanced.
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e Computational Complexity: Simulating realistic fluid behavior requires tracking the
dynamics of thousands or even millions of individual particles. Each particle must
interact with its neighbors through pressure, viscosity, and external forces, leading to
an O(n-k) computational complexity, where k is the average number of neighbors per
particle. To make this tractable in real-time, efficient spatial partitioning techniques
such as uniform grids or spatial hashing are used to accelerate neighborhood queries
(Ihmsen et al., 2014). Without such structures, brute-force neighbor search becomes
prohibitively expensive as the number of particles grows.

e Memory and GPU Optimisation: The rise of GPU programming through platforms
such as CUDA has enabled significant performance improvements in fluid
simulations. By parallelizing force computation, integration, and neighbor search,
GPUs can simulate tens of thousands of particles in real time (Macklin et al., 2014).
However, memory layout and cache coherence become critical at this scale.
Simulation frameworks often rely on Structure of Arrays (SoA) data layouts and
shared memory usage to minimize memory access latency and improve throughput.

e Stability and Realism Trade-offs: Ensuring numerical stability in real-time
simulations often requires compromises between physical accuracy and
performance. Time step size, in particular, is constrained to avoid instability. To
compensate, techniques such as XSPH viscosity (Monaghan, 1992) are used to
reduce numerical noise and promote smooth motion. Surface tension models and
artificial pressure terms (Mdller et al., 2003) help simulate cohesive behavior in
liquids without requiring prohibitively small time steps. Furthermore, adaptive
time-stepping strategies can be employed to dynamically adjust simulation resolution
based on particle interactions, improving performance without significant loss of
realism (Bender and Koschier, 2017).

In summary, achieving visually plausible fluid behavior in real time requires careful
engineering and algorithmic trade-offs. Performance constraints must be addressed at both
the algorithmic and hardware levels, while stability-enhancing techniques help bridge the
gap between accuracy and interactivity.

2.4 Existing Implementations and Frameworks

Several frameworks and engines offer SPH-based fluid simulations:
2.4.1 LiquiGen and the Stable Fluids Method

LiquiGen by Jangafx is a real-time fluid simulation system designed primarily for use
in game engines and interactive applications. It distinguishes itself from traditional
particle-based methods like Smoothed Particle Hydrodynamics (SPH) by relying on
grid-based (Eulerian) techniques to simulate the behavior of fluids. LiquiGen's design is
influenced heavily by the foundational work of Jos Stam, particularly his 1999 paper "Stable
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Fluids", which introduced a breakthrough in unconditionally stable fluid simulation methods
suitable for real-time applications.

2.4.1.1 Stable Fluids: Background and Core Concepts

The Stable Fluids paper presented a novel approach to numerically solving the
Navier-Stokes equations, the fundamental equations governing fluid motion on a fixed grid.
Jos Stam’s method was groundbreaking because it allowed for unconditional stability,
meaning simulations could run with large time steps without becoming unstable or producing
non-physical artifacts. This was in contrast to earlier fluid solvers, which often required very
small time steps to remain stable, making them impractical for interactive applications.

The Stable Fluids algorithm is based on three main components:

1. Advection using Semi-Lagrangian Methods: Instead of moving fluid quantities
forward in time (Eulerian advection), the algorithm traces backward along the velocity
field to determine where fluid properties came from. This method, known as
semi-Lagrangian advection, is stable even with large time steps and avoids the
numerical diffusion problems of simpler advection schemes.

2. Diffusion Solved with Implicit Methods: Viscosity (diffusion of velocity) is handled
using an implicit solver, which is unconditionally stable and does not require
restrictive time step sizes. This is essential for simulating thicker or more viscous
fluids in real time.

3. Pressure Projection Step: To enforce incompressibility, Jos Stam introduced a
pressure projection step that adjusts the velocity field to be divergence-free. This
involves solving Poisson’s equation on the grid, typically using an iterative method
like Gauss-Seidel or conjugate gradient.

These innovations allowed fluids to be simulated in a visually plausible and stable
manner, even on limited hardware, making Stable Fluids a cornerstone of real-time fluid
dynamics research.

2.4.1.2 LiquiGen: Real-Time Grid-Based Fluid Simulation

Building on the principles introduced by Jos Stam, LiquiGen implements a grid-based
(Eulerian) fluid simulation system optimised for modern GPU architectures. Unlike SPH or
particle-based systems, which represent fluids as discrete particles, LiquiGen discretizes the
simulation space into a uniform 3D grid and stores fluid properties (velocity, pressure,
density) at grid cells or cell faces.

LiquiGen retains the key advantages of the Stable Fluids approach (Vassvik, 2022):

e Unconditional stability, allowing large time steps and real-time interaction.

e Efficient pressure projection, using optimised solvers adapted for GPU execution.

12



e Visual plausibility, including swirling flows, vortices, and incompressible motion.

To enhance visual richness and interactivity, LiquiGen also integrates features such
as:

e Vorticity confinement, to compensate for the damping of small-scale detail caused
by numerical diffusion.

e Obstacle interaction, enabling two-way coupling between fluid and solid objects
using signed distance fields or velocity boundary conditions.

e Multiresolution grids, to simulate large-scale effects efficiently while preserving
detail where necessary.

LiquiGen is particularly well suited for applications where stability, performance, and
plausible visual fidelity are more important than strict physical accuracy. This includes video
games, interactive simulations, VR experiences, and special effects. Its reliance on GPU
compute shaders and CUDA enables simulations involving thousands of grid cells at
interactive frame rates.

Figure 6: LiquiGen & Blender - 4K bubbles and foam liquid simulation test
2.4.2 NVIDIA Flex and the Particle-Based Method

NVIDIA Flex is a unified, particle-based physics simulation framework developed by
NVIDIA, designed to fully leverage the massively parallel architecture of modern GPUs.
Unlike traditional rigid body physics engines, which often handle specific interaction types
separately, Flex adopts a unified approach where all simulated entities (rigid bodies, soft
bodies, fluids, cloth, and gases) are represented as particles. This generalization allows Flex
to simulate a broad range of physical phenomena within a consistent computational
framework (Macklin etal., 2014).
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At the core of Flex lies the Position-Based Dynamics (PBD) method, a
constraint-based simulation technique that prioritizes stability and controllability. Unlike
force-based methods, which compute forces and integrate them over time, PBD updates
particle positions directly by satisfying a set of positional constraints. This method is
inherently well-suited to GPU architectures due to its parallelism and superior numerical
stability, especially over long simulation times or under complex interactions.

For fluid simulation, Flex uses a particle-based representation similar to Smoothed
Particle Hydrodynamics (SPH), but adapted to the PBD paradigm. Fluid particles maintain a
target density through iterative positional corrections, effectively simulating pressure forces
and preserving incompressibility. Cohesion and surface tension effects are modeled via
particle-particle attraction forces and anisotropic kernels, enabling realistic phenomena such
as droplet formation and splashing.

To achieve high performance, Flex takes advantage of CUDA-enabled GPUs,
executing all major simulation steps (neighbor searches, constraint solving, and position
integration) in parallel. These neighbor searches are accelerated using spatial partitioning
structures, such as uniform grids or hierarchical grids, optimised for GPU execution.

Flex also supports continuous collision detection and two-way coupling with rigid
bodies, allowing fluid and solid objects to interact dynamically. Thanks to the unified particle
representation, both fluids and rigid bodies can share the same solver, eliminating the need
for complex interfacing or data conversion.

NVIDIA Flex has been adopted in a variety of real-time applications, including games
and interactive simulations, where both visual realism and performance are essential. While
it favors stability and speed over strict physical accuracy, Flex demonstrates how modern
GPU architectures can be harnessed to perform complex physics simulations in real time. Its
architecture marks a shift in simulation design from specialized, CPU-bound solvers to highly
parallel, GPU-based systems.

Figure 7: Nvidia Flex, Bunny Bath Dam Sample
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2.4.3 NVIDIA PhysX

NVIDIA PhysX is a real-time physics simulation engine widely used in the game
development industry. While it is best known for its rigid body dynamics and collision
detection, PhysX also supports fluid simulation, which is based on particle methods and
GPU acceleration. Unlike Flex, which uses position-based dynamics for flexibility and
stability, PhysX implements a more traditional Smoothed Particle Hydrodynamics (SPH)
approach, focusing on realistic incompressible or weakly compressible fluid behavior.

At its core, PhysX models liquids as discrete particles, each representing a small
volume of fluid. These particles interact using SPH formulations, which approximate
continuum fluid dynamics by computing local properties such as density, pressure, and
viscosity from contributions of nearby particles. In each simulation step, particles are
advanced using Newtonian mechanics, with forces derived from pressure gradients,
viscosity, gravity, and user-defined interactions.

Density is estimated by summing the mass contributions of neighboring particles,
weighted by a smoothing kernel such as the poly6 kernel. Pressure is calculated using an
equation of state, penalizing deviations from a rest density. The resulting pressure forces are
computed from pressure gradients, typically using the spiky kernel for precise directionality.
Viscosity effects are simulated by analyzing velocity differences between neighbors and
applying damping forces, often using the Laplacian viscosity kernel.

Unlike CPU-based implementations, PhysX exploits CUDA-enabled GPUs to
parallelize computations. Particle data (positions, velocities, densities, and more) are stored
in GPU-optimised buffers, and all major operations (neighbor searches, force calculations,
and time integration) are performed on the GPU. A spatial grid (or uniform hash grid) divides
the simulation space into fixed-size cells, allowing efficient neighbor queries by limiting
checks to adjacent cells. This reduces the computational complexity from O(n?) to
approximately O(n), enabling real-time simulation of thousands of particles.

PhysX also includes collision handling with both static and dynamic objects. Particles
detect contact with colliders and respond with repulsive forces, enabling effects like surface
tension, adhesion, and splashing. Additionally, two-way coupling between fluids and rigid
bodies allows fluid momentum to influence and move lightweight objects.

A key distinction between PhysX and Flex lies in their target use cases and physical
fidelity. While Flex emphasizes stability and versatility via position-based methods, PhysX
targets physically accurate simulation of incompressible fluids, though it demands higher
computational resources. This made it particularly suited for visual effects requiring plausible
fluid motion, though adoption in production-level games was often limited by performance
and hardware constraints.

PhysX was prominently featured in NVIDIA GameWorks, powering demos of
real-time water surfaces, pouring liquids, and splash effects. However, due to its complexity
and performance costs, it was eventually phased out in favor of newer, more unified
GPU-accelerated systems.
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Recent versions of PhysX (like PhysX 5) have introduced improved fluid simulation
using Finite Element Methods (FEM) and advanced particle-based models, incorporating
lessons from both PhysX and Flex (Nvidia-omniverse, 2022).

In summary, NVIDIA has an implementation of SPH-based fluid simulation within the
PhysX framework, using GPU acceleration to simulate dynamic and particle-based fluid
behavior in real time. Its integration with other physics systems and support for physically
plausible interactions made it a powerful tool for high-fidelity visual effects and interactive
simulations.

2.4.4 Open-source libraries

Beyond commercial solutions like NVIDIA Flex and PhysX, the research and
development community has produced several open-source fluid simulation libraries that
offer robust, customizable tools for both academic study and production use. Among the
most notable are DualSPHysics, Position-Based Fluids (PBF), and SPlisHSPlasH, each
implementing different methods of particle-based fluid simulation, optimised for performance,
scalability, and physical accuracy.

2.4.4.1 DualSPHysics

DualSPHysics is a Smoothed Particle Hydrodynamics (SPH) based solver developed
collaboratively by several universities and research centers. Designed for high-performance
computing applications, it is especially well-suited for engineering simulations involving
free-surface flows, wave-structure interactions, and dam break scenarios.

Built in C++ and CUDA, DualSPHysics is capable of simulating millions of particles in
real time by leveraging GPU acceleration. Its design emphasizes physical accuracy over
visual appeal, making it ideal for scientific research and hydrodynamic modeling. Features
include adaptive time stepping, open boundary conditions, floating body interactions, and
wave generation tools. The software also supports MPI-based parallelization, allowing it to
scale across multi-GPU or multi-node systems.

Figure 8: Interaction of large waves with a real coast using Blender & DualSPHysics (SPH on GPU)
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2.4.4.2 Position-Based Fluids (PBF)

Position-Based Fluids (PBF) is a constraint-based simulation method derived from
Position-Based Dynamics (PBD), initially introduced by (Macklin and Miiller, 2013). This
method prioritizes stability, real-time performance, and visual plausibility, making it popular in
games and interactive applications.

Unlike traditional SPH, which integrates forces over time, PBF enforces density
constraints directly by iteratively correcting particle positions, maintaining incompressibility
and preventing fluid collapse. This method supports features such as surface tension,
vorticity confinement, and viscosity, all while remaining highly parallelizable, ideal for GPU
computation.

Several open-source implementations of PBF are available, often integrated into
larger real-time physics frameworks or graphics engines, making it accessible for developers
aiming to include fluid effects without sacrificing simulation speed or stability.

Figure 9: Bunny taking a bath

2.4.4.3 SPlisHSPlasH

SPlisHSPlasH is a high-quality, open-source fluid simulation library focused on
physically accurate SPH simulations for real-time graphics. Developed by Jan Bender, (since
2016 and the Interactive Graphics and Simulation Group at the University of Freiburg, it
features modular, highly optimised SPH solvers designed for GPU and multi-threaded CPU
execution.

SPlisHSPlasH supports various fluid solvers, including:

e DFSPH (Divergence-Free SPH): for improved volume preservation
e |ISPH (Implicit Incompressible SPH): for accurate pressure solving

e PCISPH (Predictive-Corrective Incompressible SPH): for stable time integration
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The library is known for its extensibility, clean C++ architecture, and integration with
visualization tools like OpenGL. It also includes boundary handling, rigid body coupling, and
realistic surface rendering, making it suitable for both academic experimentation and
interactive content creation.

Figure 10: SPlisHSPlasH showcase

Open-source fluid simulation libraries like DualSPHysics, Position-Based Fluids, and
SPlisHSPlasH provide powerful alternatives to commercial tools, each tailored to specific
use cases, from scientific accuracy and scalability to real-time interactivity and visual fidelity.
These frameworks not only support cutting-edge research but also enable broader access to
advanced fluid simulation techniques across academia, industry, and independent
development.

3. Methodology

This bachelor project employs a methodology that combines theoretical
understanding with the practical analysis of existing fluid simulation implementations. The
aim is to study prior works and extract valuable insights in order to guide the development
and optimisation of a custom 3D Smoothed Particle Hydrodynamics (SPH) fluid simulation
system. This chapter outlines the chosen case studies and the anticipated development
methodology.

3.1 Study Cases

To ground the development process in concrete examples and to better understand
the nuances of fluid simulation techniques, two public projects were selected as study cases:
Elijah Nicol's SPH-Fluid-Simulator and Sebastian Lague’s Fluid Simulation. These projects
each approach fluid simulation from different perspectives and offer valuable insights into
both algorithmic structure and performance considerations. The comparative study of these
two works serves multiple purposes: to validate physical models, assess computational
efficiency and identify key implementation strategies. Lessons learned from these
implementations are instrumental in shaping the structure and optimisation of this simulation.

3.1.1 Elijah Nicol’s SPH-Fluid-Simulator

A good example of an independently developed SPH solver is the work of the user
Elijah Nicol on GitHub, who progressively explored different computational strategies for
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implementing Smoothed Particle Hydrodynamics. His project stands out for the solver’s
evolution from a single-threaded CPU implementation to a multithreaded version, and finally
to a planned migration toward GPU-based computation.

Initially, Elijah Nicol developed a monothreaded CPU-based SPH solver, which
served as a baseline for understanding particle-based fluid dynamics. This first version
included fundamental SPH components such as density estimation, pressure and viscosity
forces, all computed sequentially. Although functionally correct, the performance was
inherently limited by the sequential nature of the code, particularly when simulating a large
number of particles.

To overcome these limitations, he transitioned to a multithreaded implementation
using CPU parallelism. By distributing the workload across multiple threads, he achieved
significant performance improvements. This version leveraged concurrent computation of
per-particle properties such as force accumulation and density calculation, effectively
reducing the computational complexity associated with neighbor interactions. However,
scalability remained constrained by the limited number of CPU cores and the overhead
introduced by synchronization between threads.

Recognizing the inherently parallel nature of SPH simulations, Elijah Nicol proposed
the GPU as a more suitable platform for the solver. He outlined the advantages of compute
shaders and the high degree of data parallelism offered by modern graphics hardware.
Although his GPU implementation remained at the planning stage, his rationale was
well-founded: the large number of available GPU cores and their optimised memory
bandwidth are well-matched to the parallel structure of SPH algorithms, especially for tasks
like neighbor search, density computation, and pressure force evaluation.

Overall, Elijah Nicol work provides a useful reference for understanding the trade-offs
and performance implications of different computational backends for SPH solvers. His
project illustrates the natural progression from sequential to parallel computation and
highlights the GPU as a compelling target architecture for real-time particle-based
simulations.

Figure 11: Simulation showcase
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3.1.2 Sebastian Lague’s Fluid-Sim

Sebastian Lague’s fluid simulation project within the Unity engine provides a notable
example of an incremental and educational approach to Smoothed Particle Hydrodynamics
(SPH) implementation. His work is particularly valuable for its clear breakdown of the solver's
computational stages and his gradual transition from CPU-based methods to
GPU-accelerated techniques using compute shaders.

The initial version of Sebastian Lague's SPH solver was executed entirely on the
CPU, where each particle's physical properties (including density, pressure, and the resulting
forces) were computed in a sequential or minimally parallelized fashion. While pedagogically
clear and structurally simple, this approach was inherently limited in terms of scalability and
real-time performance, especially as the number of simulated particles increased. Sebastian
Lague's implementation followed standard SPH formulations, applying the Navier-Stokes
equations through kernel-based approximations for inter-particle interactions.

To address the performance bottlenecks inherent to CPU-bound execution,
Sebastian Lague transitioned the solver to run on the GPU via Unity's compute shader
pipeline. This transformation involved parallelizing the core stages of the SPH algorithm:
neighbor search, density calculation, pressure and viscosity force evaluation. By leveraging
the parallel processing capabilities of modern GPUs, Sebastian Lague was able to
dramatically increase simulation performance, enabling real-time interaction even with tens
of thousands of particles.

One of the critical steps in this transition was restructuring data access patterns and
computation logic to suit the GPU’s massively parallel architecture. The shift required careful
management of memory buffers, thread groups, and synchronization across compute
threads. Despite Unity’s abstractions, Sebastian Lague’s work demonstrates a sophisticated
understanding of how to map traditional CPU logic into the compute shader paradigm while
maintaining numerical stability and coherence in the fluid behavior.

Sebastian Lague's compute-shader-based solver stands out not only for its
educational clarity but also for its efficient and practical design. It exemplifies a successful
application of GPU acceleration for particle-based fluid simulation and serves as a valuable
reference for real-time SPH implementation in game engines or interactive environments.

ERRRRR

Figure 12: Sebastian Lague’s simulation in Unity
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3.2 Influence of preliminary research on practical project

The planning of the fluid simulation development in this project is significantly
influenced by two prior study cases: the monothreaded CPU-based SPH fluid simulation by
Elijah Nicol, and the GPU-accelerated implementation in Unity using compute shaders by
Sebastian Lague. These two sources of preliminary research provide both theoretical
grounding and practical insights, each contributing to different aspects of the chosen
methodology.

Elijah Nicol's implementation presents a clear and didactic version of SPH running on
a single-threaded CPU. Its main strength lies in the simplicity of the architecture, which
facilitates a thorough understanding of the fundamental mechanisms involved in SPH
simulation. Following a detailed analysis of this implementation, it becomes possible to
clearly identify both effective strategies to adopt and common pitfalls to avoid when initiating
the development of a new SPH system.

The second study case, based on Sebastian Lague’s GPU-based fluid simulation,
introduces a performant approach to real-time SPH using compute shaders. This
implementation demonstrates the advantages of massively parallel architectures, particularly
when processing large numbers of interacting particles.

This research illustrates the transition from a mono threaded CPU model to a
compute shader-based system capable of real-time performance. The architectural shift
requires a redesign of the particle interaction system, including the introduction of a spatial
partitioning structure.

Together, the two study cases provide a complementary foundation for the
development of the fluid simulation. The CPU-based version offers clarity, correctness, and a
means to verify simulation behavior, while the compute shader approach introduces
techniques necessary to achieve performance suitable for real-time applications.

The progression from Elijah Nicol's serial model to Lague’s parallel architecture
mirrors the planned evolution of the project itself, from a focus on correctness and clarity to
an emphasis on scalability and efficiency. Lessons learned from the CPU model inform the
decision making for the early stages of development, while insights from the GPU
implementation will guide the optimisation and final architecture.

In summary, the preliminary research directly shapes the design decisions,
implementation strategies, and performance goals of the practical project. It provides both

the theoretical framework and the technical roadmap necessary to implement a reliable and
performant SPH fluid simulation.

3.3 Anticipated methodology

The project involves the design and implementation of a fluid simulation using
Smoothed Particle Hydrodynamics (SPH) within a homemade 3D physics engine. The
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methodology will follow a progressive development pipeline, emphasizing modular design,
performance analysis, and iterative optimisation.

1.

Porting from 2D to 3D

The starting point of the project is an existing 2D physics engine named Bark and
developed by the author. This codebase will be adapted to handle three-dimensional
simulations, which will require a significant refactoring of core components, including
collision detection, physics integration, and spatial data structures.

Math Library Transition

To improve compatibility and performance for 3D calculations, the engine’s custom
math library will be replaced with a more optimised library suited for 3D vector and
matrix operations (e.g., DirectXMath or similar). This change will facilitate
SIMD-friendly operations and help unify spatial transformations.

Naive SPH Implementation

A basic version of SPH will be implemented using mono threaded CPU-based
calculations. This version will focus on validating the fluid simulation model and
include key components such as density, pressure and viscosity computations as
well as all the force calculations.

Each particle’s behavior will be computed independently, using brute-force neighbor
searches, resulting in a 3*(0O(n?)) complexity that will surely highlight the need for
optimisation.

Hash Grid Optimisation

To improve performance, a uniform spatial hash grid will be needed to accelerate
neighborhood lookups. This grid will divide space into cells and will hash particle
positions to cell indices, enabling reduced neighbor search complexity. This
optimisation will significantly reduce computational overhead while maintaining
simulation quality.

Profiling and Iterative Optimisation

Throughout development, performance profiling will be conducted using tools such
as Tracy Profiler to identify bottlenecks and guide further optimisations. Specific
attention will be given to the framerate and the number of particles

Pooling with another student

Collaboration with the student Olivier Pachoud who will be responsible for developing
a realistic water rendering technique using ray tracing will take place. The goal of this
cooperation is to apply visually advanced rendering (refraction, reflection, light
absorption, etc) on top of the fluid data produced by the SPH simulation. The
integration will probably involve sharing particle positions, densities, and possibly
velocity data to drive the visual appearance of the fluid in a way that aligns with the
physical simulation. This pooling of efforts will allow the project to showcase both
accurate fluid behavior and high-quality visual output.
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4. Practical Project

This project was developed under the constraint of single-threaded CPU execution,
meaning all simulation and processing tasks (except the compute shader stage) are
performed sequentially on a single core. This limitation emphasizes algorithmic efficiency
and careful resource management, as no parallelism or multithreading is leveraged to
improve performance.

4.1 Resources

This section outlines the hardware and software used throughout the development
and testing of the project. These resources were essential for implementing, debugging,
profiling, and evaluating the real-time SPH-based water simulation in a custom 3D physics
engine.

4.1.1 Hardware

The project was developed and tested on two different machines: a primary
development setup and a secondary one. This allowed for additional performance evaluation
and comparison across varying hardware configurations.

4.1.1.1 Primary setup

e CPU: Intel® Core™ i9-9900K @ 3.60GHz
e RAM: 64 GB

e GPU: NVIDIA GeForce RTX 2080 Ti (11GB)

4.1.1.2 Secondary setup

e CPU: AMD Ryzen 7 5800U with Radeon Graphics 1.90 Ghz
e RAM: 16 GB

e GPU: NVIDIA GeForce RTX 3050 Ti Laptop GPU

4.1.2 Software

The following software tools and libraries were used during the development process.
These supported compilation, debugging, rendering, and performance profiling of the
simulation:

e Operating System: Windows 10 for primary setup and Windows 11 for secondary
setup
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e IDE: Visual Studio 2022

e Build System: CMake 3.29.0

e Dependency Management: vcpkg

e Graphics API: OpenGL, using FreeGLUT and GLEW
e Profiling Tool: Tracy

e Ul and Debugging Utilities: Dear ImGui

e Math Library: DirectXMath

4.1.3 Specific resources for pooling

The Falcor framework version 8.0 (NVIDIA, August 2024) was selected by Olivier
Pachoud due to its ease of use and efficiency in creating 3D ray-traced scenes. This
advantage stems from its encapsulation of the DirectX 12 API (Microsoft, 2014) along with
its Raytracing extension, known as DXR (DirectX Raytracing) (Microsoft, 2018), which
significantly simplifies the implementation of raytracing pipelines.

4.2 Porting from 2D to 3D

In the initial phase, the custom math library was replaced with DirectXMath to
leverage SIMD optimisations and enhance performances. Then all two-dimensional vectors
were converted to three-dimensional ones, and polygons were removed as their 3D versions
were not required for the SPH simulation. The rendering was implemented using GLUT due
to its simplicity, alongside the development of a dynamic camera system. All relative
positions were updated to align with the new world coordinate system. The spatial data
structure was modified from a quadtree to an octree, during which a significant bug related to
trigger collisions was encountered and resolved after considerable effort. At this stage, a
sample named WaterBathSample was created, where particles were instantiated to observe
their behavior prior to the implementation of the SPH algorithm.

4.3 Naive SPH Implementation

The implementation of Smoothed Particle Hydrodynamics (SPH) began with an
evaluation of various data structures for storing particles, with the primary objective of
preserving physical interactions between fluid particles and other physics objects. After a
series of tests, the chosen approach involved reusing the existing Body class (originally
designed for rigid body objects) by adapting it to represent fluid particles. This class includes
essential attributes such as position, velocity, and a mechanism for applying forces. To
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distinguish fluid particles from other types of bodies within the simulation, an enumeration
value BodyType::FLUID was introduced.

BodyType { DYNAMIC, STATIC, FLUID, NONE };

TOR Position = XMVectorZero();
TOR Velocity = XMVectorZero();

CTOR PredictedPosition = XMVectorZero();

Mass = -1.¥;
BodyType Type = ype: :DYNAMIC;

XMVECTOR _force = XMVectorZero();

Figure 13: Body class

To simulate realistic fluid behavior, three primary physical quantities were computed
for each fluid particle: density, pressure, and viscosity. These computations were carried out
using a straightforward, unoptimised approach. The algorithm involved iterating over every
particle in a brute-force manner, resulting in a time complexity of 3*(O(n?)), where n is the
total number of fluid particles.

Density was computed using the standard SPH formulation, which sums the
contributions of nearby particles weighted by a smoothing kernel function. The poly6 kernel
was used for its smoothness and suitability for density estimation. For each particle, its
density was calculated by iterating through all other particles and accumulating their mass
contributions, multiplied by the kernel evaluated at the distance between the two particles.

Once density was determined, pressure was computed using an equation of state
derived from the ideal gas law. This formulation relates pressure to density through a
stiffness constant and a rest density, ensuring that the fluid behaves compressibly in
accordance with SPH conventions.

Viscosity forces were also calculated using a naive implementation of the standard
SPH viscosity formulation. This involves computing the velocity difference between pairs of
particles and applying a viscosity kernel (commonly the spiky or Laplacian viscosity kernel).
The resulting force is then accumulated to influence each particle’s velocity over time.

Due to the lack of spatial partitioning or neighbor search optimisations, all particle
interactions were evaluated globally, making the simulation computationally expensive for a
large number of particles. Nonetheless, this naive implementation served as a reference
baseline for later optimisations using acceleration structures such as spatial hash grids.

25



4.4 Optimisation

In an effort to reduce the computational complexity inherent in the naive SPH
implementation, an initial attempt was made to reuse the existing spatial partitioning
structure already employed for physical object interactions: an octree. The idea was to
leverage the octree to quickly identify neighboring fluid particles, thereby avoiding the need
for an exhaustive O(n?) comparison.

The octree, however, was originally designed to manage rigid body interactions and
was optimised for sparse and unevenly distributed object sets. When applied to the fluid
simulation, which involves a dense and relatively uniform distribution of particles, the octree
structure proved to be suboptimal. Several limitations emerged: the cost of inserting and
updating fluid particles into the tree each frame was non-trivial, and querying for neighbors
within a fixed radius often required descending multiple branches or traversing several
neighboring nodes, leading to performance bottlenecks.

Given these drawbacks, a spatial hash grid was implemented as an alternative
neighbor search strategy. This structure partitions space into uniform cells, each storing a list
of particles within its bounds. Fluid particles are hashed into grid cells based on their
positions, and neighbor queries are limited to a particle’s surrounding cells within the
smoothing radius. This approach drastically reduces the number of comparisons per particle,
achieving average-case performance closer to linear complexity with respect to the number
of particles.

XMINT3Equal]
XMINT3 getGridIndex( XMVECTOR& pos

GridHash
XMINT3 offsets[] =

f
1
INT3, std::vector<BodyRef>, GridHash, XMINT3Equal> grid;

clear()

insertParticle( BodyRef& ref, ¥MVECTOR& pos

: :vector<BodyRef> findNeighbors( XMVECTOR&

Figure 14: Spatial Hash Grid structure

The spatial hash grid proved to be significantly more efficient for dense particle
systems, especially when combined with a fixed smoothing length and uniform particle sizes.
It offered constant-time insertion and fast lookup for neighbor searches, making it a
better-suited solution for SPH simulations than the previously used octree.
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World: :Update(
TRACY_ENABLE

UpdateForces(
updateGrid();

computeNeighborsDensity();
computeNeighborsPressure();
computeNeighborsViscosity();
computeNeighborsVorticity();

SetUpOctTree();
UpdateOctTreeCollisions(0OctTree.Nodes[@]);

Figure 15: World Update function with all SPH computations

4.5 Pooling

After completing the simulation optimisations, the next step involved integrating it into
the graphics rendering framework developed by the student Olivier Pachoud. This
integration was carried out using his Falcor-based application, with the build and
configuration managed through CMake.

Figure 16: First step of the pooling (1000 patrticles)

4.6 Compute Shader Acceleration

To extract a surface from the fluid simulation, a density map must be generated by
sampling fluid density at regular spatial intervals, determined by the resolution of a 3D
texture. However, since the original simulation was CPU-based, evaluating density at
numerous positions was computationally expensive. To overcome this limitation, the
simulation was ported to a compute shader, enabling parallel computation of the density field
directly on the GPU. This approach significantly accelerated the generation of the density
map and enhanced the overall performance of the SPH simulation.
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After transitioning the CPU-based simulation to a compute shader, a significant
challenge emerged: the spatial hash grid previously used was incompatible with GPU
architecture. Specifically, the grid cells stored collections of particles, a structure that is not
well-suited for parallel execution on the GPU due to memory access conflicts.

To optimise memory alignment and access patterns, a Bitonic Sort algorithm was
implemented on the GPU to sort particles according to their spatial cell indices. This sorting
ensures better memory access, thereby significantly improving the efficiency of range
queries. As a result, neighboring particles can be retrieved in constant time during the
density sampling process, enhancing both performance and scalability of the simulation.

transform unordered numbers into a bitonic sequence sort the bitonic sequence
4 49 25 25 25 25 25 18
61 - 61 1 & 49 1 + 36 36 6 | 18§11 S
25 77 + | 61 [ D 45 49 % ¢ ] 36 26
77 [ 25 - - 77 + + 61 51 18 ¥ 5 ¥ 36
62 62 93 62 b2 [F] a9 42
93 v 93 + % 74 1 ¥ 74 [ 4 a | a4 § 49
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4 ;] 36 1 ¥ 36 v v 93 18 pler | § 6L gl ] 62
68 18 18 F 1 88 88 E7 67 67
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34 IR v $ 68 I 141 |68 68 8§ 74 % | 17
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Figure 17: Visualization of the Bitonic Sort algorithm

Following the implementation of the Bitonic Sort algorithm on the GPU, a limitation
was encountered related to thread availability. Specifically, the parallel nature of the original
algorithm imposed a hard limit, allowing only 1,024 particles to be processed simultaneously
due to the maximum number of threads per thread group. To overcome this constraint, the
sorting procedure was restructured into an iterative variant commonly referred to as Bitonic
Merge Sort with iterations. This version decomposes the sorting process into multiple
sequential passes, each executed with a fixed number of threads. By iterating over these
passes, the algorithm is no longer constrained by thread group size, enabling the efficient
sorting of arbitrarily large particle arrays entirely on the GPU.

With the simulation now executed on the GPU using compute shaders, and the
neighbor search process optimised through a spatial hash grid with the bitonic merge sort
with iterations algorithm, the system achieves stable real-time performance with particle
counts reaching up to 40,000.
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¥ Raytracing Fluid Rendering

Figure 18: Final step of the pooling (40°000 particles)

Furthermore, a matrix transformation step has been integrated into the boundary
collision response, enabling arbitrary rotation and scaling of the simulation domain.

5. Quantitative analysis

Performance evaluation is conducted using a structured testing protocol aimed at
measuring the efficiency of the simulation under increasing computational loads. The main
metric examined is the maximum number of particles that can be simulated within the time
constraints of a single frame, which is fixed at 16.67 milliseconds (equivalent to 60 frames
per second).

Detailed timing data is collected for the entire simulation process, as well as for each
individual computational stage. These stages include grid construction, density estimation,
pressure force computation and viscosity force calculation.

To capture performance trends and mitigate the impact of outliers, both the average
and median execution times are recorded for each of these steps. Profiling is carried out
using Tracy, a high-performance, real-time profiling tool that allows for precise, fine-grained
analysis of time-critical sections of the simulation pipeline.

For reference, the performance figures for other fluid simulations vary widely. For
example, Sebastian Lague’s multithreaded, CPU-based fluid simulation supports around
3,000 particles in real time without using a compute shader. Elijah Nicol's SPH demo runs
smoothly with around 1,000 particles using his single-threaded CPU implementation. By
contrast, most NVIDIA Flex samples can simulate around 70,000 particles in real time using
GPU acceleration. These benchmarks provide useful context for evaluating the scalability
and performance of the current simulation.

Using the single-threaded CPU implementation, the current simulation is expected to

handle at least 1,000 particles, and at least 20,000 particles in real time using the compute
shader implementation.
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5.1 Data charts
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Figure 20: Naive SPH implementation (900 patrticles)
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Figure 21: Spatial Hash Grid Optimisation (1600 particles)

3D engine without Naive SPH Spatial Hash Grid Compute Shader
SPH Implementation Optimisation Simulation
7’000 particles 900 particles 1’600 particles 50’000 particles
(CPU + GPU)
World Mean: 13.96 ms Mean: 14.02 ms Mean: 14.13 ms
Update Median: 14.26 ms Median: 13.89 ms Median: 13.69 ms Mean: 8.29 ms
a:4.13 ms a: 462.85 ps a:1.77 ms
Density Not Implemented Mean: 2.57 ms Mean: 4.05 ms
Median: 2.52 ms Median: 3.9 ms Mean: 2.05 ms
a: 135.94 s a: 555.21 us
Pressure Not Implemented Mean: 8.59 ms Mean: 5.04 ms
Median: 8.52 ms Median:4.9 ms Mean: 2.29 ms
a: 346.95 ps a: 642.38 ps
Viscosity Not Implemented Mean: 2.5 ms Mean: 3.97 ms
Median: 2.48 ms Median: 3.83 ms Mean: 2.31
a: 118.82 ps a: 564.02 ys
Grid Not Implemented Not Implemented Mean: 351.18 us

Median: 341.13 ys
a: 36.06 us

Mean: 2.46 ms
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5.2 Result Analysis

The performance of the SPH simulation was evaluated through successive
implementation stages, each applying progressively more advanced optimisation
techniques. Four major configurations were benchmarked: a baseline 3D engine without
SPH, a naive CPU-based SPH implementation, a spatially optimised version using a spatial
hash grid, and a GPU-based compute shader implementation.

The initial configuration (Figure 17) can handle 7,000 physics particles without any
SPH simulation. This version served as a performance baseline to isolate the cost of fluid
dynamics computations. The mean world update time was 13.96 ms, with a median of 14.26
ms and a standard deviation (a) of 4.13 ms. This relatively high standard deviation indicates
minor instability in frame processing time, likely caused by uneven CPU workload or external
system processes.

The second configuration (Figure 18) introduced a naive SPH solver using
brute-force neighbor searches with a huge complexity 3*(O(n?)). Due to this inefficiency, the
simulation could only support 900 particles within a similar frame time budget. The standard
deviation (a) of 462.85 ys, showed more stable but constrained performance. Among the
SPH computation phases, pressure computation was the most expensive, averaging 8.59
ms, followed by density at 2.57 ms, and viscosity at 2.5 ms. This distribution highlights the
computational cost of pressure force calculations in unoptimised implementations.

The third configuration (Figure 19), a spatial hash grid was integrated to accelerate
neighbor searches. This optimisation reduced the computational complexity of the solver,
resulting in almost doubling the particle count (1,600 particles). The average time for density,
pressure, and viscosity computations was 4.05 ms, 5.04 ms, and 3.97 ms respectively. In
addition, the grid construction itself only required 351.18 ps, confirming its efficiency and
negligible impact on the total update time. The performance gain demonstrates the
effectiveness of grid-based spatial partitioning for fluid simulation.

The final implementation of the simulation leverages a compute shader to offload the
Smoothed Particle Hydrodynamics (SPH) computations to the GPU, resulting in a
substantial increase in the number of particles that can be simulated in real time.
Performance profiling was conducted with a configuration of 50,000 particles, representing a
31 times improvement over the previous CPU-based implementation.

While this performance gain demonstrates the potential of GPU parallelism for
large-scale particle simulations, the actual number of particles that can be simulated is
currently constrained by several factors specific to the project's configuration. These
limitations include resource allocation caps, memory management overhead, thread group
size constraints, and possible bottlenecks related to buffer synchronization and data transfer
between CPU and GPU. Despite these constraints, since the world update takes only 8.29
ms to be processed the current setup clearly shows that the system could support
significantly larger particle counts with further optimization or architectural adjustments.
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5.3 Further development

Although the current implementation successfully ports the physics engine to 3D and
demonstrates a basic fluid simulation using Smoothed Particle Hydrodynamics (SPH), there
are several areas that could be developed further. These could enhance performance,
improve physical accuracy or extend the engine’s capabilities to encompass real-world and
game-oriented use cases.

One key area for improvement is the physical realism of the simulation. While the
current SPH formulation's basic pressure and viscosity model is suitable for demonstration
purposes, it limits the range and stability of fluid behaviours. Implementing vorticity
confinement would help to preserve the swirling motions that naturally arise in turbulent
flows, but which tend to dissipate in standard SPH simulations. Similarly, adding surface
tension models would enable the simulation to better represent small-scale fluid phenomena,
such as droplets, cohesion and fragmentation, which are essential for achieving more
visually convincing results.

Another critical improvement would be to enforce incompressibility more rigorously.
Although the current method permits some density variation, more advanced techniques
such as Predictive-Corrective Incompressible SPH (PCISPH) and Divergence-Free SPH
(DFSPH) could be adopted to minimise pressure fluctuations and enable larger, more stable
time steps. These methods have been shown to greatly enhance the accuracy of fluid
simulations, particularly in scenarios involving tight constraints or confined volumes.

Significant refinement of fluid-solid interactions could also be beneficial. Currently,
solid boundaries are handled using simplified constraints that do not fully capture the
complexity of fluid behaviour near solid surfaces. Handling solid-fluid interactions more
accurately, including dynamic boundaries and pressure projection methods, would enable
fluids to respond more realistically to obstacles and moving objects.
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6. Conclusion

The aim of this Bachelor's project was to explore the challenges and limitations of
achieving realistic, real-time water physics through Smoothed Particle Hydrodynamics (SPH)
in a custom-made 3D physics engine. The goal was to analyse the computational demands,
algorithmic complexities and architectural design decisions involved in simulating fluid
behaviour in real time.

This exploration involved the development and progressive optimisation of a naive
SPH implementation. Early development efforts were concentrated on simulating fluid
behavior through a particle-based approach, applying standard SPH equations to model
density, pressure, and viscosity forces. This approach provided a foundational understanding
of how local interactions between particles can approximate the behaviour of a continuous
fluid. However, the naive approach quickly revealed performance bottlenecks, primarily due
to the brute-force neighbour search and CPU-based computations.

To address this issue, a spatial partitioning system that uses a hash grid was
implemented, which significantly improved neighbour retrieval efficiency. Subsequently, the
core SPH computations were transferred to a compute shader for GPU acceleration, using
parallelism to enhance simulation speed while preserving visual and physical accuracy.
While this shift improved real-time responsiveness, it also exposed additional complexities
such as memory management between the CPU and GPU, precision issues and debugging
limitations inherent to shader development.

Ultimately, the project demonstrated that, although SPH is a powerful and intuitive
method for simulating fluid dynamics, it presents significant computational and architectural
challenges, particularly when aiming for real-time performance. The trade-off between
physical accuracy and simulation speed remains a key limitation. Careful balancing is
required between factors such as neighbour search complexity, time-step stability, solver
accuracy and resource constraints.

Realistic water physics in real-time environments, particularly in games and
interactive simulations, often necessitate compromises. While SPH strikes a good balance
between realism and controllability, further optimisations, hybrid models or level-of-detail
techniques are necessary to scale the simulation to more complex or large-scale scenarios.

In conclusion, this project has provided a technical and conceptual understanding of
the complexities involved in real-time fluid simulation using SPH. It has highlighted the
mathematical and computational demands, as well as the architectural challenges, of
integrating such a system into a homemade 3D physics engine. A key takeaway is that
incorporating fluid simulation into an existing physics system poses significant challenges.
Many of the necessary data structures, memory layouts and update loops are not designed
to handle the high levels of parallelism and precision required by a fluid simulation system.
To achieve optimal performance and maintainability, it is often wiser to design the engine
from the ground up with fluid simulation in mind, preparing the architecture, data flow and
modular systems accordingly.
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Figure 22: Final state of the CPU-based implementation (1600 particles)

» Sample Manager

Figure 23: Final state of the GPU compute shader implementation (40’000 particles)
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